5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK.

نویسندگان

  • John Walker
  • Humberto B Jijon
  • Hugo Diaz
  • Payam Salehi
  • Thomas Churchill
  • Karen L Madsen
چکیده

AMPK (AMP-activated protein kinase) is a key sensor of energy status within the cell. Activated by an increase in the AMP/ATP ratio, AMPK acts to limit cellular energy depletion by down-regulating selective ATP-dependent processes. The purpose of the present study was to determine the role of AMPK in regulating intestinal glucose transport. [3H]3-O-methyl glucose fluxes were measured in murine jejunum in the presence and absence of the AMPK activators AICAR (5-aminoimidazole-4-carboxamide riboside) and metformin and the p38 inhibitor, SB203580. To differentiate between a sodium-coupled (SGLT1) and diffusive (GLUT2) route of entry, fluxes were measured in the presence of the SGLT1 and GLUT2 inhibitors phloridzin and phloretin. Glucose transporter mRNA levels were measured by reverse transcriptase-PCR, and localization by Western blotting. Surface-expressed GLUT2 was assessed by luminal biotinylation. Activation of p38 mitogen-activated protein kinase was analysed by Western blotting. We found that treatment of jejunal tissue with AICAR resulted in enhanced net glucose uptake and was associated with phosphorylation of p38 mitogen-activated protein kinase. Inhibition of p38 abrogated the stimulation of AICAR-stimulated glucose uptake. Phloretin abolished the AICAR-mediated increase in glucose flux, whereas phloridzin had no effect, suggesting the involvement of GLUT2. In addition, AICAR decreased total protein levels of SGLT1, concurrently increasing levels of GLUT2 in the brush-border membrane. The anti-diabetic drug metformin, a known activator of AMPK, also induced the localization of GLUT2 to the luminal surface. We conclude that the activation of AMPK results in an up-regulation of non-energy requiring glucose uptake by GLUT2 and a concurrent down-regulation of sodium-dependent glucose transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport.

Exercise increases glucose transport in muscle by activating 5'-AMP-activated protein kinase (AMPK), but subsequent events are unclear. Presently, we examined the possibility that AMPK increases glucose transport through atypical protein kinase Cs (aPKCs) by activating proline-rich tyrosine kinase-2 (PYK2), ERK pathway components, and phospholipase D (PLD). In mice, treadmill exercise rapidly a...

متن کامل

5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.

Incubation of skeletal muscle with 5-aminoimidazole-4carboxamide ribonucleoside (AICAR), a compound that activates 5'-AMP-activated protein kinase (AMPK), has been demonstrated to stimulate glucose transport and GLUT4 translocation to the plasma membrane. In this study, we characterized the AMPK cascade in 3T3-L1 adipocytes and the response of glucose transport to incubation with AICAR. Both is...

متن کامل

Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle.

5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose trans...

متن کامل

Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle

AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There h...

متن کامل

5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes.

AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-imidazole carboxamide riboside) is correlated with increased glucose transport in rodent skeletal muscle via an insulin-independent pathway. We determined in vitro effects of insulin and/or AICAR exposure on glucose transport and cell-surface GLUT4 content in skeletal muscle from nondiabetic men and men with type 2 diabetes. AICAR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 385 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005